- for|feit
Useful english dictionary. 2012.
Useful english dictionary. 2012.
for´feit|er — … Useful english dictionary
un|for|feit|ed — «uhn FR fuh tihd», adjective. not forfeited; maintained; not lost … Useful english dictionary
for´feit|a|ble — … Useful english dictionary
FOR — FOR; for·ag·er; for·a·lite; for·am; for·a·min·i·fer; for·as·much; for·as·te·ro; for·ay·er; for·bear·ance; for·bear·ant; for·bear·er; for·bear·ing·ly; for·bear·ing·ness; for·bid·dance; for·bid·den; for·bid·der; for·bid·ding; for·biv·o·rous;… … English syllables
for — for·mic; for·mi·ca; For·mi·ca; for·mi·can; for·mi·ca·ri·idae; for·mi·car·i·um; for·mi·cary; for·mi·ca·tion; for·mic·i·dae; for·mi·cide; for·mi·civ·o·rous; for·mi·coi·dea; for·mi·col·o·gist; for·mi·da·bil·i·ty; for·mi·da·ble; For·mol; for·mol·ize; … English syllables
feit — coun·ter·feit·er; coun·ter·feit·ly; coun·ter·feit·ness; for·feit·able; for·feit·er; for·feit·ure; sur·feit·er; coun·ter·feit; for·feit; sur·feit; for·feit·able·ness; … English syllables
Feit–Thompson theorem — In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963) Contents 1 History 2 Significance of the proof … Wikipedia
Feit-Thompson conjecture — In mathematics, the Feit Thompson conjecture is a conjecture in number theory, suggested by harvs|txt=yes|first=Walter|last= Feit|authorlink=Walter Feit| first2=John G. |last2=Thompson|author2 link=John G. Thompson|year=1962. The conjecture… … Wikipedia
Carl Feit — is a noted cancer research scientist and occupant of the Dr. Joseph and Rachel Ades Chair in Health Sciences at Yeshiva University. He has served as Chairman of the Science Division of Yeshiva College since 1985. Prior to that he was a research… … Wikipedia
Théorème de Feit et Thompson — En mathématiques, et plus précisément en théorie des groupes, le théorème de Feit et Thompson, appelé aussi théorème de l ordre impair, dit que tout groupe fini d ordre impair est résoluble, ce qui équivaut à dire que tout groupe simple fini non… … Wikipédia en Français